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Abstract: Brain-computer interfaces (BCIs) rep-
resent an innovative approach to neurorehabilitation 
for neurological conditions, particularly stroke, mul-
tiple sclerosis, and Parkinson’s disease. This paper 
provides a comprehensive analysis of current BCI 
applications, technological developments, and clini-
cal outcomes in these conditions. Recent advances in 
electroencephalography-based BCIs have demonstrat-
ed promising results, with classification accuracies 
exceeding 90% in stroke rehabilitation and compara-
ble performance in multiple sclerosis and Parkinson’s 
disease. Meta-analyses of stroke rehabilitation trials 
(n=235) indicate significant motor function improve-
ments, with standardized mean differences of 0.79 in 
upper limb assessment scores compared to conven-
tional therapy. Disease-specific challenges necessitate 
tailored approaches, while hybrid systems combining 
multiple signal types and integration with virtual real-
ity or robotic assistance enhance therapeutic potential. 
The development of portable, home-based systems 
offers increased therapy intensity but raises concerns 
about remote monitoring and safety protocols. This re-
view synthesizes current evidence supporting BCI ap-
plications in neurorehabilitation and highlights critical 
areas for future research, including cognitive rehabili-
tation optimization and the standardization of outcome 
measures for cross-condition comparison.

Keywords: brain-computer interface, neuroreha-
bilitation, stroke, multiple sclerosis, Parkinson’s dis-
ease, motor imagery, neuroplasticity.

INTRODUCTION
Diseases of the central nervous system, such as 

stroke, multiple sclerosis (MS), and Parkinson’s dis-
ease (PD), represent significant global health challeng-
es, with diverse pathologies affecting neural structure 

and function. Stroke remains one of the leading causes 
of adult disability, affecting approximately 16.3 mil-
lion people worldwide annually, as estimated by the 
WHO. Half of all stroke survivors experience lasting 
disabilities that impact motor and cognitive functions 
(1). The challenges of stroke-related neuroplasticity 
necessitate effective rehabilitation methods that target 
damaged neural pathways to restore motor function 
and improve quality of life.

Multiple sclerosis, affecting roughly 1.8 million 
people globally (WHO), causes neurodegeneration 
and demyelination, disrupting motor and sensory 
processing and leading to physical and cognitive im-
pairments (2). Current MS therapies often prove in-
sufficient in addressing progressive motor decline and 
cognitive dysfunction (3). Parkinson’s disease affects 
approximately 1% of individuals over 60, causing mo-
tor deficits due to the degeneration of dopamine-pro-
ducing neurons, which results in tremors, rigidity, and 
bradykinesia (4). Traditional rehabilitation methods 
show limitations in providing targeted neurostimula-
tion for PD’s progressive symptoms (5).

These conditions present substantial challenges in 
neurorehabilitation, as existing approaches often fail 
to achieve long-term recovery due to the brain’s lim-
ited capacity for self-repair. While conventional reha-
bilitation remains a cornerstone of treatment for these 
neurological disorders, its limitations in addressing 
disease progression highlight the need for complemen-
tary therapeutic approaches to enhance rehabilitation 
outcomes.

Brain-computer interfaces (BCIs) establish direct 
communication channels between the brain and exter-
nal devices, enabling control of assistive technologies 
and therapeutic systems through neural signal inter-
pretation. These systems fall into two main categories: 
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invasive and non-invasive interfaces. Electroenceph-
alography (EEG) is a widely used non-invasive BCI 
method, valued for its cost-effectiveness, safety, and 
practical implementation (6). Motor imagery (MI)-
based BCIs show promise in motor function restora-
tion by leveraging the brain’s ability to activate motor 
regions during imagined movement. These systems 
detect and translate neural activity into physical or 
virtual actions (7). EEG-based BCIs effectively cap-
ture motor-related signals, particularly sensorimotor 
rhythms associated with imagined movement, thereby 
engaging neuroplastic mechanisms that promote mo-
tor recovery (8, 9).

BCIs offer significant value in neurorehabilitation 
by harnessing neuroplasticity—the brain’s ability to 
reorganize and strengthen neural connections through 
activity (10). In stroke rehabilitation, BCIs facilitate 
repetitive, targeted activation of specific neural path-
ways, reinforcing motor intention through movement 
simulation tasks. This process, combined with BCI 
feedback via visual or robotic-assisted systems, sup-
ports neural circuit reorganization and functional re-
covery (11, 12).

This paper examines recent developments in BCI-
based neurorehabilitation for stroke, MS, and PD, 
analyzing clinical applications and emerging research 
directions. The analysis covers EEG-based BCI appli-
cations in motor, cognitive, and speech rehabilitation, 
including MI-based BCIs for upper limb motor recov-
ery and EEG-based network analysis in chronic stroke 
patients. Additionally, it explores BCI integration with 
virtual reality (VR) and robotics—technologies that 
enhance user engagement and promote neuroplastici-
ty through interactive therapeutic environments (13). 
Given the experimental nature of BCI-based treat-
ments, this review also addresses technical challenges 
related to neurological signal accuracy and user-spe-
cific calibration, as well as ethical considerations in 
clinical rehabilitation (14, 15).

By evaluating current BCI methodologies, this pa-
per provides a comprehensive analysis of optimal BCI 
integration in neurorehabilitation, offering insights for 
researchers and clinicians advancing this field.

BRAIN-COMPUTER  
INTERFACE TECHNOLOGY 
IN NEUROREHABILITATION

Brain-computer interfaces (BCIs) have emerged 
as innovative tools in neurorehabilitation by estab-
lishing direct communication pathways between the 
brain and external devices. These systems have shown 
significant development in recent years, offering vari-
ous approaches to facilitate motor recovery and neural 

plasticity in patients with neurological conditions. A 
bibliometric analysis by Angulo Medina et al. (15) re-
vealed a substantial increase in BCI research focused 
on rehabilitation applications, particularly in motor 
recovery and cognitive rehabilitation. The integration 
of advanced signal processing techniques and artificial 
intelligence has expanded these systems’ capabilities, 
enabling more precise and adaptive rehabilitation pro-
tocols (16). Understanding the different types of BCIs, 
their underlying signal acquisition methods, and the 
current technical challenges is essential for advancing 
their clinical implementation.

Types of BCIs Used in Rehabilitation
Motor Imagery (MI)
Motor imagery-based BCIs demonstrate value 

in neurorehabilitation, especially for stroke recovery. 
Research has identified distinct patterns of neural acti-
vation during MI tasks in stroke patients, showing in-
creased activity in the contralateral motor area, while 
healthy controls exhibit higher activity in the ipsilater-
al motor area (8). MI-BCIs show notable effectiveness 
in the beta band, where stroke patients demonstrate 
significantly higher clustering coefficients during MI 
tasks compared to active and passive movements. 
Studies reveal that node strength in the gamma band 
during MI paradigms shows marked improvement 
over both active and passive paradigms, suggesting 
enhanced neural engagement during imagery-based 
tasks (8). Miladinović et al. (17) conducted a system-
atic study of temporal parameters in MI-BCI systems, 
determining that time windows of 1-2 seconds provide 
an optimal balance between classification accuracy 
and system responsiveness. Their research compared 
multiple classification approaches, with linear discri-
minant analysis showing superior performance for MI 
task classification.

Passive BCIs
Passive BCIs monitor brain states without requir-

ing active user commands, offering an alternative ap-
proach to rehabilitation. Simon et al. (14) emphasize 
these systems’ particular value for patients with severe 
motor impairments who may find active BCI control 
challenging. Recent developments have integrated 
passive BCIs with virtual reality and robotic systems 
to create more engaging rehabilitation environments 
(13) for patients with limited abilities, including those 
with complete paralysis.

Closed-loop BCIs
Closed-loop BCI systems provide continuous ad-

aptation based on patient performance and physiolog-
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ical feedback. Saga et al. (18) developed an approach 
combining EEG and EMG in a closed-loop system, 
demonstrating feasibility for continuous motion con-
trol. Zhan et al. (9) provided evidence that BCI-FES 
(functional electrical stimulation) systems can im-
prove motor function in chronic stroke patients, show-
ing significant improvements in Fugl-Meyer assess-
ment scores compared to FES-only controls.

Signal Acquisition  
and Processing Techniques
EEG remains the primary signal acquisition meth-

od in rehabilitation BCIs due to its practical advantages 
in clinical settings. A comprehensive bibliometric anal-
ysis by Tsiamalou et al. (6) identified EEG as the most 
significant input method for BCIs, citing its non-in-
vasive nature, accessibility, and cost-effectiveness. 
Recent advances in signal processing have focused 
on improving classification accuracy through various 
methods. Guerrero-Mendez et al. (19) investigated the 
effects of temporal and frequency segmentation com-
bined with common spatial pattern methods for move-
ment identification, demonstrating the importance of 
dynamic temporal segmentation strategies. Additional-
ly, Rosanne et al. (20) introduced novel features based 
on EEG amplitude modulation dynamics, showing sig-
nificant improvements in classifier performance when 
combined with conventional power spectral features.

Challenges and Limitations
Signal Noise and Classification Accuracy
BCI systems continue to face significant techno-

logical challenges despite recent advances. Simon et 
al. (14) identified several critical barriers to widespread 
BCI adoption, including signal quality variability and 
maintaining consistent classification accuracy across 
sessions. Miladinović et al. (17) specifically addressed 
these issues in their work on optimizing real-time MI-
BCI performance, highlighting the balance between 
classification accuracy and system responsiveness.

User Adoption
Gunduz et al (21) reviewed challenges in novel 

stroke neurorehabilitation approaches, emphasizing 
the heterogeneity of patient populations and the need 
for standardized methodologies. Their work highlights 
the importance of biomarker-driven individualized ap-
proaches and large-scale clinical trials with well-tar-
geted patient populations.

Ethical and Practical Barriers
A recent bibliometric analysis by Angulo Medina 

et al. (15) identified system inefficiencies and acces-

sibility issues as key challenges. The authors empha-
size the need for expanding global participation in BCI 
research and development, particularly in underrepre-
sented regions, while addressing ethical considera-
tions, including data privacy and equitable access to 
BCI technologies. The scientific community continues 
to evaluate the long-term efficacy of BCIs and their 
impact on rehabilitation alongside existing treatment 
options (15, 22).

BRAIN-COMPUTER 
INTERFACE APPLICATIONS  
IN STROKE REHABILITATION

Motor Rehabilitation

Mechanisms of BCI  
in Post-Stroke Recovery
BCIs have demonstrated significant potential as 

therapeutic interventions for post-stroke motor recov-
ery. These systems facilitate neuroplasticity through 
direct neural feedback loops, enabling patients to en-
gage in rehabilitation exercises even without voluntary 
movement capacity (14). The therapeutic mechanism 
relies on coupling intended motor actions with sen-
sory feedback, reinforcing neural pathways involved 
in motor control. Recent neurophysiological studies 
have revealed underlying mechanisms of BCI-me-
diated recovery. Su et al. (8) documented significant 
alterations in brain network connectivity during BCI 
interventions, particularly in the beta frequency band. 
Their findings showed enhanced clustering coeffi-
cients during motor imagery tasks compared to active 
and passive movements, suggesting distinct patterns 
of functional reorganization. These studies observed 
increased activity in contralesional motor areas, indi-
cating potential compensatory mechanisms in the re-
covery process.

Clinical Applications  
and Intervention Protocols
Several therapeutic protocols have been devel-

oped for BCI-mediated stroke rehabilitation. MI-BCIs 
have shown promise in clinical settings. In a signifi-
cant clinical study, Irimia et al. (12) evaluated MI-BCI 
control in stroke patients using the recoveri X system. 
Their research demonstrated high classification ac-
curacies (mean 87.4%) across patient sessions, with 
peak accuracies exceeding 96%. Notably, stroke pa-
tients achieved higher control accuracies than previ-
ously reported in healthy subjects, potentially due to 
increased therapeutic motivation. Their intervention 
protocol combined motor imagery with simultane-
ous functional electrical stimulation (FES) and visual 
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feedback through simulated environments, creating a 
comprehensive sensorimotor feedback loop. Building 
on these findings, Kaviri and Vinjamuri (16) imple-
mented advanced source localization techniques with 
a neural network architecture, achieving 91.03% clas-
sification accuracy with dipole fitting. Their method-
ology demonstrated superior performance compared 
to conventional approaches in differentiating motor 
imagery patterns. The integration of multiple physio-
logical signals has enhanced therapeutic applications. 
Saga et al. (18) developed a hybrid system combining 
EEG and EMG, enabling continuous motion detection 
and feedback, facilitating more natural movement pat-
terns during rehabilitation sessions.

Clinical Outcomes  
and Therapeutic Efficacy
Meta-analytic evidence supports the clinical effi-

cacy of BCI interventions in post-stroke motor recov-
ery. A systematic review of nine randomized controlled 
trials (n = 235) by Cervera et al. (10) demonstrated a 
standardized mean difference of 0.79 in upper limb 
Fugl-Meyer Assessment scores compared to control 
interventions, suggesting clinically meaningful im-
provements in motor function following BCI therapy. 
Further evidence comes from comparative effective-
ness research. Ang et al. (11) showed that BCI-trig-
gered robotic feedback achieved comparable motor 
gains to intensive robotic therapy while requiring 
significantly fewer movement repetitions (136 versus 
1,040 repetitions per session), suggesting enhanced 
therapeutic efficiency through more precise timing of 
sensorimotor feedback.

Cognitive and Speech Rehabilitation

Cognitive Recovery Outcomes
BCI interventions have shown efficacy in ad-

dressing post-stroke cognitive deficits. Controlled tri-
als of EEG-based neurofeedback training have demon-
strated specific improvements in working memory and 
short-term memory function (23). These cognitive im-
provements appear to be protocol-specific, with effec-
tiveness noted in interventions targeting upper alpha 
frequency modulation.

Speech and Language Recovery
Recent technological advances have expanded 

BCI applications to speech rehabilitation. Systematic 
investigation of BCI-based communication systems 
has demonstrated feasibility for patients with severe 
post-stroke speech impairments (24). These systems 
utilize neural signal processing to decode speech in-

tentions, providing alternative communication path-
ways for severely affected patients.

Recent Clinical Advances  
and Future Directions
Protocol optimization continues to advance ther-

apeutic applications. Miladinović et al. (17) identified 
optimal temporal parameters for real-time MI-BCI im-
plementation, determining that 1-2 second processing 
windows maximize both classification accuracy and 
therapeutic responsiveness. BCI intervention acces-
sibility has improved through technological develop-
ments. Craik et al. (25) validated a low-cost, mobile 
EEG-based system achieving clinical-grade signal 
quality (SNR = 121 dB, CMRR = 110 dB) while main-
taining closed-loop functionality. These developments 
suggest potential for expanded therapeutic applica-
tions in outpatient and home-based settings. Despite 
these advances, significant challenges remain in proto-
col standardization and clinical implementation (14). 
Future research directions include the development 
of adaptive therapeutic protocols and integration of 
artificial intelligence for enhanced signal processing. 
Additionally, large-scale clinical trials are needed to 
establish optimal treatment parameters and identify 
patient populations most likely to benefit from BCI 
interventions.

BRAIN-COMPUTER INTERFACE  
APPLICATIONS IN MULTIPLE 
SCLEROSIS REHABILITATION

Motor Rehabilitation

BCIs for Motor Impairment in MS
Multiple sclerosis (MS) presents unique rehabil-

itation challenges due to its progressive nature and 
variable symptom presentation. Brain-computer in-
terface technology has emerged as a promising inter-
vention for addressing motor impairments in MS pa-
tients. Carrere et al. (26) investigated BCI combined 
with functional electrical stimulation (FES) for gait 
rehabilitation in MS patients, demonstrating statisti-
cally significant post-treatment improvements in gait 
speed and walking ability. Their findings showed ear-
lier event-related desynchronization onset latency af-
ter treatment, suggesting changes in functional brain 
connections involved in sensorimotor rhythm modula-
tion. Recent feasibility studies have shown promising 
results for BCI application in MS patients. Russo et al. 
(27) demonstrated that neural sources generating mo-
tor imagery originated from similar motor areas in MS 
patients compared to neurotypical participants, though 
with notable differences in alpha power during image-



	 BRAIN-COMPUTER INTERFACES IN NEUROREHABILITATION FOR CENTRAL NERVOUS SYSTEM DISEASES...	 53

ry tasks, indicating preserved motor imagery circuits 
for BCI control despite disease progression.

Neuroplasticity and MS
Evidence suggests specific neuroplastic mecha-

nisms influenced by BCI interventions in MS patients. 
Pinter et al. (28) examined the effects of EEG-based 
neurofeedback training through fMRI studies in MS 
patients. Their research revealed increased fractional 
anisotropy and functional connectivity within the sali-
ence and sensorimotor networks following successful 
BCI training. These structural and functional changes 
correlated with cognitive improvements, suggesting 
beneficial neuroplastic adaptations from BCI interven-
tions.

Cognitive Rehabilitation

Memory and Executive  
Function Training
Cognitive impairment affects a significant propor-

tion of MS patients, particularly impacting attention, 
processing speed, and executive function. Kober et al. 
(23) demonstrated significant improvements in long-
term memory and executive functions through EEG-
based neurofeedback training in MS patients. These 
improvements occurred specifically in patients who 
successfully learned to self-regulate their brain activ-
ity through neurofeedback training. Riccio et al. (29) 
evaluated a hybrid BCI system combining P300-based 
BCI with conventional assistive technologies, show-
ing comparable usability to conventional assistive 
technology inputs, suggesting potential applications 
for cognitive training and communication support.

Recent Clinical Advances  
and Future Directions
BCI implementation in MS rehabilitation faces 

several distinct challenges. Buyukturkoglu et al.(30) 
identified fatigue as a significant factor affecting BCI 
performance, documenting specific EEG-derived func-
tional connectivity patterns associated with MS-relat-
ed fatigue. Their findings suggest the need for fatigue 
monitoring and adaptation mechanisms in future BCI 
systems. Disease progression variability presents ad-
ditional complications for long-term BCI implemen-
tation. Shiels et al. (31) demonstrated that while MS 
patients achieved BCI control comparable to healthy 
controls, performance variability was higher, poten-
tially due to disease-related fluctuations, indicating 
the need for adaptive BCI systems. Martinez-Cagigal 
et al. (32) developed an asynchronous P300-based 
BCI web browser achieving an average accuracy of 

84.14% in MS patients, demonstrating feasibility for 
practical, daily-use applications despite disease-re-
lated limitations. However, fatigue management and 
system adaptability remain critical considerations for 
long-term use. Recent technological developments 
show promise in addressing these challenges. Chen 
et al. (33) demonstrated successful implementation of 
steady-state visual evoked potential (SSVEP)-based 
BCIs for assistive device control in MS patients, sug-
gesting multiple BCI paradigms might accommodate 
different disease progression stages and symptom 
presentations. Future directions for BCI applications 
in MS rehabilitation include the development of hy-
brid systems combining multiple input modalities 
(26), integration of artificial intelligence for adaptive 
control (27), and implementation of fatigue manage-
ment strategies (30). Additionally, the development of 
home-based BCI training systems, as demonstrated by 
Pinter et al. (28), may improve accessibility and facili-
tate more consistent therapeutic applications.

BRAIN-COMPUTER INTERFACE 
APPLICATIONS IN PARKINSON’S 
DISEASE REHABILITATION

Motor Rehabilitation

Addressing Motor Symptoms
Parkinson’s disease (PD) manifests through a 

complex array of motor symptoms, including resting 
tremor, bradykinesia, rigidity, and postural instability, 
which significantly impact daily activities and quality 
of life (4). BCI technology has emerged as an interven-
tion option for addressing these motor manifestations, 
offering both rehabilitative and assistive approaches 
for symptom management (34). Recent advances have 
led to the development of non-invasive and invasive 
BCI systems categorized into two approaches: reha-
bilitative BCIs aimed at promoting neuroplasticity and 
recovery, and assistive BCIs designed to provide direct 
control over external devices or stimulation parame-
ters (5, 35).

Closed-loop BCIs for Adaptive Treatment
Closed-loop BCI systems, particularly in con-

junction with deep brain stimulation (DBS), represent 
a significant advancement in PD treatment. These sys-
tems provide real-time feedback and adjust stimula-
tion parameters based on ongoing neural activity and 
motor performance (36). Studies have demonstrated 
superior clinical outcomes compared to conventional 
approaches, with evidence showing better preserva-
tion of functional daily beta fluctuations and improved 
motor control (37). Machine learning algorithms have 
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enhanced these systems’ capability to identify pa-
tient-specific neural markers of motor performance. 
Castaño-Candamil et al. (38) demonstrated that super-
vised machine learning approaches can identify indi-
vidual neural markers that are both sensitive to ther-
apy and potentially useful as controllable variables in 
adaptive BCI systems.

Cognitive Rehabilitation
Executive Function and Memory Support
Beyond motor symptoms, cognitive decline rep-

resents a significant challenge in PD management. 
BCI-based cognitive training paradigms have shown 
promise in addressing executive function and memory 
deficits. Recent work combining BCI with virtual reali-
ty and artificial intelligence has demonstrated potential 
for enhancing adaptive responses and improving quali-
ty of life (13). Motor imagery-based BCI systems have 
shown particular promise in cognitive rehabilitation, 
improving both motor planning and execution through 
cognitive motor network engagement (39). This ap-
proach has demonstrated specific benefits for gait con-
trol, where motor imagery integration with BCI feed-
back can help patients overcome locomotor deficits.

Recent Clinical Advances  
and Future Directions
BCI implementation in PD rehabilitation contin-

ues to evolve with several significant developments. 
Rossi et al. (40) proposed integrating action observa-
tion treatment (AOT) with BCI-triggered muscle stim-
ulation, suggesting potential enhancement of motor 
execution during rehabilitation sessions. Belkacem et 
al. (41) reviewed advanced closed-loop BCI systems 
incorporating various stimulation techniques (electric, 
magnetic, and optogenetic), demonstrating how feed-
back-based adaptation could improve therapeutic out-
comes. Regarding signal acquisition and processing, 
Merk et al. (42) demonstrated electrocorticography 
(ECoG) superiority over subthalamic local field poten-
tials for movement decoding in PD, with performance 
correlating to disease state. Their connectomic analy-
sis approach showed potential for predicting individ-
ual channel performance across patients, supporting 
personalized BCI implementations. While Möller et 
al. (5) emphasize the need for additional research to 
establish feasibility, efficacy, and safety of technolo-
gy-based neurorehabilitation in PD patients, key areas 
for future development include standardization of pro-
tocols across different disease stages, development of 
more user-friendly and accessible systems, integration 
of artificial intelligence for improved accuracy and ad-
aptability, investigation of potential neuroprotective 

effects, and long-term studies to evaluate sustained 
benefits.

The field continues to advance, focusing on devel-
oping sophisticated closed-loop systems that adapt to 
individual patient needs and disease progression pat-
terns. Recent advances in electrophysiological record-
ing and analysis techniques, combined with machine 
learning approaches, suggest promising directions for 
BCI applications in PD rehabilitation (36).

Comparative Analysis  
of Brain-Computer Interface  
Applications in Stroke, MS, and PD

Efficacy Comparison
Brain-computer interface applications demonstrate 

varying levels of effectiveness across stroke, multiple 
sclerosis (MS), and Parkinson’s disease (PD). In stroke 
rehabilitation, BCI systems present the most robust ev-
idence base, with meta-analyses of nine randomized 
controlled trials (n = 235) showing a standardized mean 
difference of 0.79 in upper limb motor recovery com-
pared to control interventions (10). MS studies demon-
strate that patients can achieve BCI control comparable 
to healthy individuals (27, 31), though with higher per-
formance variability due to disease-related fluctuations, 
with accuracy rates ranging from 84.14% to 93.18% de-
pending on the paradigm used (29, 32). In PD, closed-
loop BCI applications show particular promise, with 
adaptive systems demonstrating superior clinical out-
comes compared to conventional approaches (37), in-
cluding better preservation of functional daily beta fluc-
tuations and improved motor control (36, 37).

Disease-Specific Challenges  
and Adaptations

Each condition presents unique challenges re-
quiring specific BCI adaptations. Stroke rehabilitation 
requires BCIs to address lesion location heterogeneity 
and its impact on neural signal generation (9, 14). Stud-
ies show that both ipsilateral and contralateral motor 
areas may need targeted intervention depending on le-
sion location (8). MS systems must adapt to both dis-
ease progression and symptom fluctuation, with studies 
identifying specific EEG-derived functional connectiv-
ity patterns associated with fatigue(30). These systems 
require session-by-session calibration based on patient 
status (31). PD applications face challenges of dynam-
ic symptom fluctuation and medication effects, neces-
sitating sophisticated closed-loop systems that adjust 
stimulation parameters based on real-time neural activ-
ity (36, 37). These adaptive systems must account for 
both motor and non-motor symptoms, as demonstrated 
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by variations in beta-band activity and movement de-
coding performance across medication states (42).

Patient Suitability and Customization
Patient characteristics significantly influence BCI 

effectiveness across all three conditions. For stroke, 
technical factors such as optimal processing time win-
dows (1-2 seconds) affect system responsiveness and 
accuracy (17), while individual brain network connec-
tivity patterns can predict therapeutic response (9). In 
MS, successful BCI implementation requires consid-
eration of both fatigue levels and disease stage, with 
studies showing that neurofeedback training effective-
ness correlates with specific changes in brain micro-
structure and functional connectivity (28). MRI stud-
ies reveal that successful BCI users show increased 
fractional anisotropy and enhanced connectivity with-
in the salience and sensorimotor networks (28). In 
PD, movement decoding performance correlates with 
disease severity, with electrocorticography showing 
superior results compared to subthalamic recordings 
(42). The effectiveness of closed-loop systems varies 
with individual patient characteristics and disease pro-
gression (37), highlighting the need for personalized 
calibration approaches.

Promising Cross-Condition Findings
Several BCI approaches show promise across all 

three conditions, though with varying implementation 
requirements. Motor imagery protocols demonstrate 
effectiveness across conditions, achieving classifica-
tion accuracies of 91.03% in stroke (16), comparable 
accuracies to healthy controls in MS (27), and success-
ful integration with gait control in PD (39). Studies 
show that motor imagery activates similar motor areas 
across conditions (7), though with disease-specific var-
iations in signal characteristics. Hybrid systems com-
bining multiple signal types improve reliability across 
conditions, particularly when integrating EEG with 
EMG for continuous motion detection (18) or combin-
ing BCI with conventional assistive technologies(29). 
Recent advances in artificial intelligence and adaptive 
algorithms have enhanced system performance across 
all three conditions (15,43), suggesting a promising di-
rection for future development.

Future Directions and Emerging Trends

Advancements in BCI Technology

Artificial Intelligence and Machine 
Learning Integration
Artificial intelligence is advancing BCI applica-

tions across neurological conditions. Machine learning 

algorithms improve signal classification accuracy and 
enable real-time adaptation to patient states (43). Re-
cent developments in neural networks and advanced 
signal processing have achieved superior performance 
in decoding motor intentions, with classification accu-
racies exceeding 91% (16).

Hybrid BCIs

Emerging hybrid systems combine multiple neu-
roimaging and physiological monitoring approaches. 
The integration of EEG with EMG has demonstrated 
improved outcomes, enabling continuous motion de-
tection and more natural interaction in rehabilitation 
settings (18). These multimodal approaches show im-
proved reliability and broader application potential 
compared to single-modality systems.

Home-Based BCI Rehabilitation

The development of portable, user-friendly BCI 
systems enables home-based rehabilitation. Craik et 
al. (25) demonstrated the feasibility of low-cost, mo-
bile EEG-based BCIs with high signal quality (SNR 
= 121 dB, CMRR = 110 dB) and reliability. Such sys-
tems could increase therapy intensity and accessibili-
ty, though they require careful consideration of remote 
monitoring and safety protocols.

Ethical Considerations  
and Quality of Life

The implementation of BCI technology requires 
addressing several key concerns. Access equity re-
mains a significant challenge, with current systems of-
ten limited to specialized centers (15). Privacy and data 
security considerations become increasingly important 
as systems move to home settings. Long-term impacts 
on quality of life require systematic monitoring, par-
ticularly in progressive conditions like MS and PD.

Suggested Areas for Further Research

Several critical areas require additional investiga-
tion:

• Optimization of BCI protocols for cognitive re-
habilitation across conditions, building on promising 
findings from both MS and stroke studies.

• Development of adaptive algorithms for disease 
progression in MS and PD, considering the dynamic 
nature of these conditions.

• Integration of BCI systems with existing reha-
bilitation protocols, focusing on complementary rather 
than replacement approaches.



56	 Knežević Sara	

• Standardization of outcome measures for 
cross-condition comparison, enabling more robust 
evaluation of intervention effectiveness.

• Long-term effectiveness studies in home-based 
settings, particularly important given the chronic na-
ture of these conditions.

BCI technology in neurorehabilitation continues 
to advance toward increasingly sophisticated, person-
alized, and accessible systems. As highlighted by re-
cent reviews (15), success depends on addressing both 
technical advances and practical implementation chal-
lenges. The field’s evolution from technical achieve-
ments to patient-centered, home-deployable solutions 
represents a crucial step toward broader clinical adop-
tion. Standardization of protocols and outcome meas-
ures remains essential for establishing evidence-based 
guidelines across conditions while maintaining flexi-
bility for condition-specific adaptations.

CONCLUSION

Brain-computer interfaces have emerged as trans-
formative tools in neurorehabilitation, demonstrating 
significant potential across stroke, multiple sclerosis, 
and Parkinson’s disease treatment. The evidence pre-
sented in this review highlights both the remarkable 
progress in BCI technology and the distinct challenges 
that remain. Meta-analytic findings support BCIs’ clin-
ical efficacy, particularly in stroke rehabilitation, while 
emerging applications in MS and PD show promising 
results through adaptive and closed-loop systems. The 
integration of artificial intelligence, advanced signal 
processing, and hybrid approaches has substantially 
improved BCI performance and reliability. Classifica-
tion accuracies exceeding 90% in motor imagery tasks 
and successful implementation of home-based systems 
demonstrate the technology’s growing maturity. How-
ever, the field must address several critical challenges 
for widespread clinical adoption, including protocol 
standardization, accessibility, and long-term effective-
ness evaluation.

Disease-specific adaptations have proven crucial 
for successful BCI implementation. Stroke rehabilita-
tion benefits from targeted neural pathway activation, 
MS applications require fatigue management and ad-
aptation to disease progression, and PD systems show 
promise through real-time symptom monitoring and 
stimulation adjustment. The development of portable, 

user-friendly systems represents a significant step to-
ward broader therapeutic applications, though careful 
consideration of remote monitoring and safety proto-
cols remains essential.

Future directions should focus on optimizing 
cognitive rehabilitation protocols, developing sophis-
ticated adaptive algorithms for disease progression, 
and establishing standardized outcome measures for 
cross-condition comparison. The potential for home-
based rehabilitation could significantly impact thera-
py intensity and accessibility, particularly benefiting 
patients with chronic conditions. As BCI technology 
continues to evolve, its role in neurorehabilitation will 
likely expand, offering increasingly personalized and 
effective treatment options for patients with neurolog-
ical conditions.
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Interfejsi mozak-računar predstavljaju inovativni 
pristup u neurorehabilitaciji neuroloških stanja, poseb-
no moždanog udara, multiple skleroze i Parkinsonove 
bolesti. Ovaj rad pruža sveobuhvatnu analizu trenut-
nih primena interfejsa mozak-računar, tehnološkog 
razvoja i kliničkih ishoda kod ovih stanja. Nedavni 
napredak u sistemima zasnovanim na elektroencefalo-
grafiji pokazuje obećavajuće rezultate sa tačnošću kla-
sifikacije preko 90% u rehabilitaciji nakon moždanog 
udara i uporedivim performansama kod pacijenata sa 
multiplom sklerozom i Parkinsonovom bolešću. Me-
ta-analize studija rehabilitacije moždanog udara (n = 
235) ukazuju na značajna poboljšanja motorne funkci-
je, sa standardizovanim razlikama od 0,79 u ocenama 
gornjih ekstremiteta u poređenju sa konvencionalnom 
terapijom. Specifični izazovi bolesti zahtevaju prila-

gođene pristupe, dok hibridni sistemi koji kombinuju 
više tipova signala i integraciju sa virtuelnom real-
nošću ili robotskom asistencijom pokazuju povećan 
terapeutski potencijal. Razvoj prenosivih sistema za 
kućnu upotrebu pruža mogućnosti za povećanje in-
tenziteta terapije, istovremeno postavljajući pitanja o 
daljinskom praćenju i protokolima bezbednosti. Ovaj 
pregled sintetiše trenutne dokaze koji podržavaju pri-
menu interfejsa mozak-računar u neurorehabilitaciji, 
istovremeno naglašavajući ključne oblasti za buduća 
istraživanja, uključujući optimizaciju kognitivne reha-
bilitacije i standardizaciju mera ishoda za poređenje 
između različitih stanja.

Ključne reči: interfejs mozak-računar, neurore-
habilitacija, moždani udar, multipla skleroza, Parkin-
sonova bolest, motorna imaginacija, neuroplastičnost.
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