BRAIN-COMPUTER INTERFACES IN NEUROREHABILITATION FOR CENTRAL NERVOUS SYSTEM DISEASES: APPLICATIONS IN STROKE, MULTIPLE SCLEROSIS AND PARKINSON’S DISEASE

Sara Knežević  

 

ABSTRACT

Brain-computer interfaces (BCIs) represent an innovative approach to neurorehabilitation for neurological conditions, particularly stroke, multiple sclerosis, and Parkinson’s disease. This paper provides a comprehensive analysis of current BCI applications, technological developments, and clinical outcomes in these conditions. Recent advances in electroencephalography-based BCIs have demonstrated promising results, with classification accuracies exceeding 90% in stroke rehabilitation and comparable performance in multiple sclerosis and Parkinson’s disease. Meta-analyses of stroke rehabilitation trials (n=235) indicate significant motor function improvements, with standardized mean differences of 0.79 in upper limb assessment scores compared to conventional therapy. Disease-specific challenges necessitate tailored approaches, while hybrid systems combining multiple signal types and integration with virtual reality or robotic assistance enhance therapeutic potential. The development of portable, home-based systems offers increased therapy intensity but raises concerns about remote monitoring and safety protocols. This review synthesizes current evidence supporting BCI applications in neurorehabilitation and highlights critical areas for future research, including cognitive rehabilitation optimization and the standardization of outcome measures for cross-condition comparison.

 

KEYWORDS

brain-computer interface, neurorehabilitation, stroke, multiple sclerosis, Parkinson’s disease, motor imagery, neuroplasticity
 

FULL TEXT:

PDF
 

REFERENCES

  1. Donkor ES. Stroke in the 21st Century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. 2018; 2018: 3238165. doi: 10.1155/2018/3238165.
  2. Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, et al. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev. 2024; 99: 102357. doi: 10.1016/j.arr.2024.102357.
  3. Abboud H, Hill E, Siddiqui J, Serra A, Walter B. Neuromodulation in multiple sclerosis. Mult Scler. 2017; 23(13): 1663-76. doi: 10.1177/1352458517736150.
  4. Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 2016; 139(S1): 318-24. doi: 10.1111/jnc.13691.
  5. Möller JC, Zutter D, Riener R. Technology-based neurorehabilitation in Parkinson’s disease: a narrative review. CTN. 2023; 5(3): 23. doi: 10.3390/ctn5030023.
  6. Tsiamalou A, Dardiotis E, Paterakis K, Fotakopoulos G, Liampas I, Sgantzos M, et al. EEG in neurorehabilitation: a bibliometric analysis and content review. Neurol Int. 2022; 14(4): 1046-61. doi: 10.3390/neurolint14040084.
  7. Ruiz S, Lee S, Dalboni Da Rocha JL, Ramos-Murguialday A, Pasqualotto E, Soares E, et al. Motor intentions decoded from fMRI signals. Brain Sci. 2024; 14(7): 643. doi: 10.3390/brainsci14070643.
  8. Su H, Zhan G, Lin Y, Wang L, Jia J, Zhang L, et al. Analysis of brain network differences in the active, motor imagery, and passive stoke rehabilitation paradigms based on the task-state EEG. Brain Res. 2025; 1846: 149261. doi: 10.1016/j.brainres.2024.149261.
  9. Zhan G, Chen S, Ji Y, Xu Y, Song Z, Wang J, et al. EEG-based brain network analysis of chronic stroke patients after BCI rehabilitation training. Front Hum Neurosci. 2022; 16: 909610. doi: 10.3389/fnhum.2022.909610.
  10. Cervera MA, Soekadar SR, Ushiba J, Millán J del R, Liu M, Birbaumer N, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol. 2018; 5(5): 651-63. doi: 10.1002/acn3.544.
  11. Ang KK, Chua KSG, Phua KS, Wang C, Chin ZY, Kuah CWK, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin EEG Neurosci. 2015; 46(4): 310-20. doi: 10.1177/1550059414522229.
  12. Irimia DC, Ortner R, Poboroniuc MS, Ignat BE, Guger C. High classification accuracy of a motor imagery based brain-computer interface for stroke rehabilitation training. Front Robot AI. 2018; 5: 130. doi: 10.3389/frobt.2018.00130.
  13. Akbar K, Passaro A, Di Gioia M, Martini E, Dragone M, Zullo A, et al. Reviewing the horizon: the future of extended reality and artificial intelligence in neurorehabilitation for brain injury recovery. Information. 2024; 15(8): 501. doi: 10.3390/info15080501.
  14. Simon C, Bolton DAE, Kennedy NC, Soekadar SR, Ruddy KL. Challenges and opportunities for the future of brain-computer interface in neurorehabilitation. Front Neurosci. 2021; 15: 699428. doi: 10.3389/fnins.2021.699428.
  15. Angulo Medina AS, Aguilar Bonilla MI, Rodríguez Giraldo ID, Montenegro Palacios JF, Cáceres Gutiérrez DA, Liscano Y. Electroencephalography-based brain-computer interfaces in rehabilitation: a bibliometric analysis (2013-2023). Sensors. 2023; 24(22): 7125. doi: 10.3390/s24227125.
  16. Kaviri SM, Vinjamuri R. Integrating electroencephalography source localization and residual convolutional neural network for advanced stroke rehabilitation. Bioengineering. 2024; 11(10): 967. doi: 10.3390/bioengineering11100967.
  17. Miladinović A, Accardo A, Jarmolowska J, Marusic U, Ajčević M. Optimizing real-time MI-BCI performance in post-stroke patients: impact of time window duration on classification accuracy and responsiveness. Sensors. 2024; 24(18): 6125. doi: 10.3390/s24186125.
  18. Saga N, Okawa Y, Saga T, Satoh T, Saito N. Trial of brain-computer interface for continuous motion using electroencephalography and electromyography. Electronics. 2024; 13(14): 2770. doi: 10.3390/electronics13142770.
  19. Guerrero-Mendez CD, Blanco-Diaz CF, Rivera-Flor H, Fabriz-Ulhoa PH, Fragoso-Dias EA, De Andrade RM, et al. Influence of temporal and frequency selective patterns combined with CSP layers on performance in exoskeleton-assisted motor imagery tasks. NeuroSci. 2024; 5(2): 169-83. doi: 10.3390/neurosci5020012.
  20. Rosanne O, Alves De Oliveira A, Falk TH. EEG amplitude modulation analysis across mental tasks: towards improved active BCIs. Sensors. 2023; 23(23): 9352. doi: 10.3390/s23239352.
  21. Gunduz ME, Bucak B, Keser Z. Advances in stroke neurorehabilitation. J Clin Med. 2023; 12(21): 6734. doi: 10.3390/jcm12216734.
  22. Värbu K, Muhammad N, Muhammad Y. Past, present, and future of EEG-based BCI applications. Sensors (Basel). 2022; 22(9): 3331. doi: 10.3390/s22093331.
  23. Kober SE, Schweiger D, Witte M, Reichert JL, Grieshofer P, Neuper C, et al. Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. J Neuroeng Rehabil. 2015; 12(1): 107. doi: 10.1186/s12984-015-0105-6.
  24. Mane R, Wu Z, Wang D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review. Stroke Vasc Neurol. 2022; 7(6): 541-9. doi: 10.1136/svn-2022-001506.
  25. Craik A, González-España JJ, Alamir A, Edquilang D, Wong S, Sánchez Rodríguez L, et al. Design and validation of a low-cost mobile EEG-based brain-computer interface. Sensors. 2023; 23(13): 5930. doi: 10.3390/s23135930.
  26. Carrere LC, Taborda M, Ballario C, Tabernig C. Effects of brain-computer interface with functional electrical stimulation for gait rehabilitation in multiple sclerosis patients: preliminary findings in gait speed and event-related desynchronization onset latency. J Neural Eng. 2021; 18(6): 066022. doi: 10.1088/1741-2552/ac39b8.
  27. Russo JS, Chodhary M, Strik M, Shiels TA, Lin CS, John SE et al. Feasibility of using source-level brain computer interface for people with multiple sclerosis. Annu Int Conf IEEE Eng Med Biol Soc. 2023;2023:1-4. doi: 10.1109/EMBC40787.2023.10340364.
  28. Pinter D, Kober SE, Fruhwirth V, Berger L, Damulina A, Khalil M, et al. MRI correlates of cognitive improvement after home-based EEG neurofeedback training in patients with multiple sclerosis: a pilot study. J Neurol. 2021; 268(10): 3808-16. doi: 10.1007/s00415-021-10530-9.
  29. Riccio A, Schettini F, Galiotta V, Giraldi E, Grasso MG, Cincotti F, et al. Usability of a hybrid system combining P300-based brain-computer interface and commercial assistive tchnologies to enhance communication in people with multiple sclerosis. Front Hum Neurosci. 2022; 16: 868419. doi: 10.3389/fnhum.2022.868419.
  30. Buyukturkoglu K, Porcaro C, Cottone C, Cancelli A, Inglese M, Tecchio F. Simple index of functional connectivity at rest in Multiple Sclerosis fatigue. Clin Neurophysiol. 2017; 128(5): 807-13. doi: 10.1016/j.clinph.2017.02.010.
  31. Shiels TA, Oxley TJ, Fitzgerald PB, Opie NL, Wong YT, Grayden DB, et al. Feasibility of using discrete brain computer interface for people with multiple sclerosis. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:5686-9. doi: 10.1109/EMBC46164.2021.9629518.
  32. Martinez-Cagigal V, Gomez-Pilar J, Alvarez D, Hornero R. An asynchronous P300-based brain-computer interface web browser for severely disabled people. IEEE Trans Neural Syst Rehabil Eng. 2016; 25(8): 1332-42. doi: 10.1109/TNSRE.2016.2623381.
  33. Chen W, Chen S-K, Liu Y-H, Chen Y-J, Chen C-S. An Electric Wheelchair Manipulating System Using SSVEP-Based BCI System. Biosensors (Basel). 2022; 12(10): 772. doi: 10.3390/bios12100772.
  34. Zhang H, Jiao L, Yang S, Li H, Jiang X, Feng J, et al. Brain-computer interfaces: the innovative key to unlocking neurological conditions. Int J Surg. 2023; 110(9): 5745-62. doi: 10.1097/JS9.0000000000002022.
  35. Tayebi H, Azadnajafabad S, Maroufi SF, Pour-Rashidi A, Khorasanizadeh M, Faramarzi S, et al. Applications of brain-computer interfaces in neurodegenerative diseases. Neurosurg Rev. 2023; 46(1): 131. doi: 10.1007/s10143-023-02038-9.
  36. Neumann W-J, Gilron R, Little S, Tinkhauser G. Adaptive deep brain stimulation: from experimental evidence toward practical implementation. Mov Disord. 2023; 38(6): 937-48. doi: 10.1002/mds.29415.
  37. Caffi L, Romito LM, Palmisano C, Aloia V, Arlotti M, Rossi L, et al. Adaptive vs. conventional deep brain stimulation: one-year subthalamic recordings and clinical monitoring in a patient with Parkinson’s disease. Bioengineering (Basel). 2024; 11(10): 990. doi: 10.3390/bioengineering11100990.
  38. Castaño-Candamil S, Piroth T, Reinacher P, Sajonz B, Coenen VA, Tangermann M. Identifying controllable cortical neural markers with machine learning for adaptive deep brain stimulation in Parkinson’s disease. Neuroimage Clin. 2020; 28: 102376. doi: 10.1016/j.nicl.2020.102376.
  39. Cuomo G, Maglianella V, Ghanbari Ghooshchy S, Zoccolotti P, Martelli M, Paolucci S, et al. Motor imagery and gait control in Parkinson’s disease: techniques and new perspectives in neurorehabilitation. Expert Rev Neurother. 2022; 22(1): 43-51. doi: 10.1080/14737175.2022.2018301.
  40. Rossi F, Savi F, Prestia A, Mongardi A, Demarchi D, Buccino G. Combining action observation treatment with a brain-computer interface system: perspectives on neurorehabilitation. Sensors (Basel). 2021; 21(24): 8504. doi: 10.3390/s21248504.
  41. Belkacem AN, Jamil N, Khalid S, Alnajjar F. On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders. Front Hum Neurosci. 2023; 17: 1085173. doi: 10.3389/fnhum.2023.1085173.
  42. Merk T, Peterson V, Lipski WJ, Blankertz B, Turner RS, Li N, et al. Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease. eLife. 2022; 11: e75126. doi: 10.7554/eLife.75126.
  43. Calderone A, Latella D, Bonanno M, Quartarone A, Mojdehdehbaher S, Celesti A, et al. Towards transforming neurorehabilitation: the impact of artificial intelligence on diagnosis and treatment of neurological disorders. Biomedicines. 2024; 12(10): 2415. doi: 10.3390/biomedicines12102415.

REFBACKS

  • There are currently no refbacks.



Copyright (c) 2025 Sara Knežević

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scroll to Top