MULTIOMICS INTEGRATION IN ANTI-TUBERCULOSIS DRUG DISCOVERY
ABSTRACT
Despite intensive global efforts, tuberculosis remains one of the leading global health burdens, with antimicrobial resistance being a significant challenge to managing the disease. In addition, the current drugs used to treat tuberculosis suffer from limitations, such as prolonged therapeutic duration and toxicity. Therefore, the development of new anti-tuberculosis drugs is a priority. However, this process faces several challenges. The introduction of a multiomics approach could serve as an ideal platform to accelerate drug development by addressing these challenges. This article reviews the potential role of multiomics in anti-tuberculosis drug development and briefly discusses the associated challenges in utilizing multiomics for drug discovery.
KEYWORDS
FULL TEXT:
PDFREFERENCES
- Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, et al. What we know about tuberculosis transmission: an overview. J Infect Dis. 2017;216(suppl_6):629-35. doi: 10.1093/infdis/jix362.
- World Health Organization (2022): WHO Consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment 2022 Update (Geneva, Switzerland: World Health Organization). (Available on: https://www.who.int/publications/i/item/9789240063129)
- Ejalonibu MA, Ogundare SA, Elrashedy AA, Ejalonibu MA, Lawal MM, Mhlongo NN, et al. Drug discovery for Mycobacterium tuberculosis using structure-based somputer-aided drug design approach. Int J Mol Sci. 2021;22(24):13259. doi: 10.3390/ijms222413259.
- Goff A, Cantillon D, Muraro Wildner L, Waddell SJ. Multi-Omics technologies applied to tuberculosis drug discovery, Appl Sci.2020;10(13): 4629. doi: 10.3390/app10134629
- Ivanisevic T, Sewduth RN. Multi-Omics integration for the design of novel therapies and the identification of novel biomarkers. Proteomes. 2023;11(4):34. doi: 10.3390/proteomes11040034.
- Sertkaya A, Beleche T, Jessup A, Sommers BD. Costs of drug development and research and development intensity in the US, 2000-2018. JAMA Netw Open. 2024;7(6):e2415445. doi: 10.1001/jamanetworkopen.2024.15445.
- Rybniker J, Vocat A, Sala C, Busso P, Pojer F, Benjak A, et al. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nat Commun. 2015;6:7659. doi: 10.1038/ncomms8659.
- Athieniti E, Spyrou GM. A guide to multi-omics data collection and integration for translational medicine. Comput Struct Biotechnol J. 2022;21:134-49. doi: 10.1016/j.csbj.2022.11.050.
- Paananen J, Fortino V. An omics perspective on drug target discovery platforms. Brief Bioinform. 2020;21(6):1937-53. doi: 10.1093/bib/bbz122.
- Planell N, Lagani V, Sebastian-Leon P, van der Kloet F, Ewing E, Karathanasis N, et al. STATegra: Multi-Omics data integration – a conceptual scheme with a bioinformatics pipeline. Front Genet. 2021;12:620453. doi: 10.3389/fgene.2021.620453.
- Turek C, Wróbel S, Piwowar M. OmicsON – Integration of omics data with molecular networks and statistical procedures. PLoS One. 2020;15(7):e0235398. doi: 10.1371/journal.pone.0235398.
- Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-Omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14(6):e8124. doi: 10.15252/msb.20178124.
- Liu XY, Mei XY. Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches. Front Bioeng Biotechnol. 2023;11:1156372. doi: 10.3389/fbioe.2023.1156372.
- Li X, Ma J, Leng L, Han M, Li M, He F, et al. MoGCN: A Multi-Omics integration Method Based on Graph Convolutional Network for cancer subtype analysis. Front Genet. 2022;13:806842. doi: 10.3389/fgene.2022.806842.
- Otchere ID, Aboagye SY, Arthur PK, Asante-Poku A. Viewpoint of multi-omics potential in tuberculosis research: identifying biomarkers for biomanufacturing of efficient control tools. Front Trop Dis.2024;5:1443248. doi: 10.3389/fitd.2024.1443248
- Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-omics integration in complex disease primary tissues. Trends Genet. 2023;39(1):46-58. doi: 10.1016/j.tig.2022.08.005.
- Li K, Du Y, Li L, Wei DQ. Bioinformatics approaches for anti-cancer drug discovery. Curr Drug Targets. 2020;21(1):3-17. doi: 10.2174/1389450120666190923162203.
- Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA, Ma W et al. Multi-omics learning predictor of breast cancer therapy response. Nature. 2022;601(7894):623-9. doi: 10.1038/s41586-021-04278-5.
- Allesøe RL, Lundgaard AT, Hernández Medina R, Aguayo-Orozco A, Johansen J, Nissen JN, et al. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nat Biotechnol. 2023;41(3):399-408. doi: 10.1038/s41587-022-01520-x. Epub 2023 Jan 2. Erratum in: Nat Biotechnol. 2023;41(7):1026. doi: 10.1038/s41587-023-01805-9.
- Si S, Liu H, Xu L, Zhan S. Identification of novel therapeutic targets for chronic kidney disease and kidney function by integrating multi-omics proteome with transcriptome. Genome Med. 2024;16(1):84. doi: 10.1186/s13073-024-01356-x.
- Wei W, Yan H, Zhao J, Li H, Li Z, Guo H, et al Multi-omics comparisons of p-aminosalicylic acid (PAS) resistance in folC mutated and un-mutated Mycobacterium tuberculosis strains. Emerg Microbes Infect. 2019;8(1):248-61. doi: 10.1080/22221751.2019.1568179.
- Krishnan S, Queiroz ATL, Gupta A, Gupte N, Bisson GP, Kumwenda J, et al. Integrative multi-omics reveals serum markers of tuberculosis in advanced HIV. Front Immunol. 2021;12:676980. doi: 10.3389/fimmu.2021.676980.
- Cui Y, Dang G, Wang H, Tang Y, Lv M, Liu S, et al. DosR’s multifaceted role on Mycobacterium bovis BCG revealed through multi-omics. Front Cell Infect Microbiol. 2023;13:1292864. doi: 10.3389/fcimb.2023.1292864.
- Zhao J, Wei W, Yan H, Zhou Y, Li Z, Chen Y, et al. Assessing capreomycin resistance on tlyA deficient and point mutation (G695A) Mycobacterium tuberculosis strains using multi-omics analysis. Int J Med Microbiol. 2019;309(7):151323. doi: 10.1016/j.ijmm.2019.06.003.
- Bai Y, Wang J, Feng X, Xie L, Qin S, Ma G, et al. Identification of drug targets for Sjögren’s syndrome: multi-omics Mendelian randomization and colocalization analyses. Front Immunol. 2024;15:1419363. doi: 10.3389/fimmu.2024.1419363.
- Kundu S, Biukovic G, Grüber G, Dick T. Bedaquiline targets the ε subunit of mycobacterial F-ATP synthase. Antimicrob Agents Chemother. 2016;60(11):6977-9. doi: 10.1128/AAC.01291-16.
- Rybniker J, Kohl TA, Barilar I, Niemann S. No evidence for acquired mutations associated with cytochrome bc1 inhibitor resistance in 13,559 clinical Mycobacterium tuberculosis complex isolates. Antimicrob Agents Chemother. 2018;63(1):e01317-18. doi: 10.1128/AAC.01317-18.
- Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med. 2003;198(5):693-704. doi: 10.1084/jem.20030846.
- Rienksma RA, Suarez-Diez M, Mollenkopf HJ, Dolganov GM, Dorhoi A, Schoolnik GK, et al. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics. 2015;16(1):34. doi: 10.1186/s12864-014-1197-2.
- Pethe K, Sequeira PC, Agarwalla S, Rhee K, Kuhen K, Phong WY, et al A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun. 2010;1(5):57. doi: 10.1038/ncomms1060.
- Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A. 1999;96(22):12833-8. doi: 10.1073/pnas.96.22.12833.
- Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem. 2004;279(38):40174-84. doi: 10.1074/jbc.M406796200.
- Bouhaddou M, Yu LJ, Lunardi S, Stamatelos SK, Mack F, Gallo JM, et al Predicting in vivo efficacy from in vitro data: quantitative systems pharmacology modeling for an epigenetic modifier drug in cancer. Clin Transl Sci. 2020;13(2):419-29. doi: 10.1111/cts.12727.
- Liu H, Su L, Zhu T, Zhu X, Zhu Y, Peng Y, et al. Comparative analysis on proteomics profiles of intracellular and extracellular M.tb and BCG from infected human macrophages. Front Genet. 2022;13:847838. doi: 10.3389/fgene.2022.847838.
- Reinecke M, Brear P, Vornholz L, Berger BT, Seefried F, Wilhelm S, et al. Chemical proteomics reveals the target landscape of 1,000 kinase inhibitors. Nat Chem Biol. 2024;20(5):577-85. doi: 10.1038/s41589-023-01459-3.
- Bisht D, Sharma D, Sharma D, Singh R, Gupta VK. Recent insights into Mycobacterium tuberculosis through proteomics and implications for the clinic. Expert Rev Proteomics. 2019;16(5):443-56. doi: 10.1080/14789450.2019.1608185.
- Yu Y, Jiang XX, Li JC. Biomarker discovery for tuberculosis using metabolomics. Front Mol Biosci. 2023;10:1099654. doi: 10.3389/fmolb.2023.1099654.
- Luies L, du Preez I, Loots DT. The role of metabolomics in tuberculosis treatment research. Biomark Med. 2017;11(11):1017-29. doi: 10.2217/bmm-2017-0141.
REFBACKS
- There are currently no refbacks.
Copyright (c) 2025 Abubakar Yaro
This work is licensed under a Creative Commons Attribution 4.0 International License.
